Mandolin Chord Chart and Tabs in Modal D Tuning

Ми11, Ми dom11
Notes: Ми, Соль♯, Си, Ре, Фа♯, Ля
x,x,6,2,2,0,4,0 (xx412.3.)
x,x,6,2,0,2,4,0 (xx41.23.)
x,x,4,2,2,0,6,0 (xx312.4.)
x,x,4,2,0,2,6,0 (xx31.24.)
x,x,0,2,2,0,4,6 (xx.12.34)
x,x,6,2,2,0,0,4 (xx412..3)
x,x,0,2,0,2,4,6 (xx.1.234)
x,x,4,2,0,2,0,6 (xx31.2.4)
x,x,4,2,2,0,0,6 (xx312..4)
x,x,0,2,0,2,6,4 (xx.1.243)
x,x,0,2,2,0,6,4 (xx.12.43)
x,x,6,2,0,2,0,4 (xx41.2.3)
x,7,6,9,9,0,0,x (x2134..x)
x,7,6,9,9,0,x,0 (x2134.x.)
x,7,6,9,0,9,x,0 (x213.4x.)
x,7,6,9,0,9,0,x (x213.4.x)
x,7,x,9,0,9,6,0 (x2x3.41.)
x,7,6,x,0,9,9,0 (x21x.34.)
x,7,0,9,0,9,6,x (x2.3.41x)
x,7,0,9,9,0,6,x (x2.34.1x)
x,7,x,9,9,0,6,0 (x2x34.1.)
x,7,9,x,9,0,6,0 (x23x4.1.)
x,7,6,x,9,0,9,0 (x21x3.4.)
x,7,9,x,0,9,6,0 (x23x.41.)
x,7,0,x,0,9,6,9 (x2.x.314)
x,7,x,9,9,0,0,6 (x2x34..1)
x,7,0,x,9,0,9,6 (x2.x3.41)
x,7,9,x,9,0,0,6 (x23x4..1)
x,7,6,x,0,9,0,9 (x21x.3.4)
x,7,0,x,9,0,6,9 (x2.x3.14)
x,7,0,9,9,0,x,6 (x2.34.x1)
x,7,6,x,9,0,0,9 (x21x3..4)
x,7,x,9,0,9,0,6 (x2x3.4.1)
x,7,9,x,0,9,0,6 (x23x.4.1)
x,7,0,x,0,9,9,6 (x2.x.341)
x,7,0,9,0,9,x,6 (x2.3.4x1)
9,7,6,9,0,x,x,0 (3214.xx.)
9,7,6,9,x,0,0,x (3214x..x)
9,7,6,9,x,0,x,0 (3214x.x.)
9,7,6,9,0,x,0,x (3214.x.x)
0,7,6,9,9,x,0,x (.2134x.x)
0,7,6,9,9,x,x,0 (.2134xx.)
0,7,6,9,x,9,0,x (.213x4.x)
0,7,6,9,x,9,x,0 (.213x4x.)
9,7,9,x,11,0,x,0 (213x4.x.)
11,7,9,x,9,0,x,0 (412x3.x.)
9,7,9,x,11,0,0,x (213x4..x)
11,7,9,x,9,0,0,x (412x3..x)
2,x,4,2,0,x,6,0 (1x32.x4.)
0,x,4,2,x,2,6,0 (.x31x24.)
2,x,6,2,x,0,4,0 (1x42x.3.)
2,x,6,2,0,x,4,0 (1x42.x3.)
0,x,6,2,2,x,4,0 (.x412x3.)
2,x,4,2,x,0,6,0 (1x32x.4.)
0,x,4,2,2,x,6,0 (.x312x4.)
0,x,6,2,x,2,4,0 (.x41x23.)
0,7,x,9,x,9,6,0 (.2x3x41.)
0,7,0,9,9,x,6,x (.2.34x1x)
9,7,0,9,0,x,6,x (32.4.x1x)
9,7,6,x,0,x,9,0 (321x.x4.)
9,7,9,x,0,x,6,0 (324x.x1.)
9,7,6,x,x,0,9,0 (321xx.4.)
9,7,x,9,0,x,6,0 (32x4.x1.)
9,7,x,9,x,0,6,0 (32x4x.1.)
0,7,0,9,x,9,6,x (.2.3x41x)
0,7,6,x,x,9,9,0 (.21xx34.)
0,7,9,x,9,x,6,0 (.23x4x1.)
0,7,x,9,9,x,6,0 (.2x34x1.)
9,7,9,x,x,0,6,0 (324xx.1.)
9,7,0,9,x,0,6,x (32.4x.1x)
0,7,9,x,x,9,6,0 (.23xx41.)
0,7,6,x,9,x,9,0 (.21x3x4.)
9,7,9,x,0,11,0,x (213x.4.x)
0,7,9,x,11,9,0,x (.12x43.x)
11,7,9,x,0,9,0,x (412x.3.x)
0,7,9,x,9,11,0,x (.12x34.x)
11,7,9,x,0,9,x,0 (412x.3x.)
0,7,9,x,11,9,x,0 (.12x43x.)
9,7,9,x,0,11,x,0 (213x.4x.)
0,7,9,x,9,11,x,0 (.12x34x.)
2,x,0,2,x,0,6,4 (1x.2x.43)
0,x,0,2,x,2,4,6 (.x.1x234)
0,x,0,2,x,2,6,4 (.x.1x243)
2,x,6,2,x,0,0,4 (1x42x..3)
2,x,0,2,x,0,4,6 (1x.2x.34)
0,x,0,2,2,x,4,6 (.x.12x34)
2,x,0,2,0,x,4,6 (1x.2.x34)
2,x,6,2,0,x,0,4 (1x42.x.3)
0,x,6,2,x,2,0,4 (.x41x2.3)
0,x,6,2,2,x,0,4 (.x412x.3)
0,x,4,2,x,2,0,6 (.x31x2.4)
2,x,4,2,0,x,0,6 (1x32.x.4)
2,x,0,2,0,x,6,4 (1x.2.x43)
0,x,4,2,2,x,0,6 (.x312x.4)
0,x,0,2,2,x,6,4 (.x.12x43)
2,x,4,2,x,0,0,6 (1x32x..4)
9,7,9,x,x,0,0,6 (324xx..1)
9,7,x,9,0,x,0,6 (32x4.x.1)
9,7,x,9,x,0,0,6 (32x4x..1)
0,7,0,x,x,9,6,9 (.2.xx314)
9,7,0,x,x,0,6,9 (32.xx.14)
0,7,9,x,9,x,0,6 (.23x4x.1)
9,7,9,x,0,x,0,6 (324x.x.1)
0,7,0,x,9,x,6,9 (.2.x3x14)
0,7,9,x,x,9,0,6 (.23xx4.1)
0,7,x,9,x,9,0,6 (.2x3x4.1)
0,7,0,9,x,9,x,6 (.2.3x4x1)
9,7,0,x,0,x,6,9 (32.x.x14)
9,7,0,9,x,0,x,6 (32.4x.x1)
0,7,0,9,9,x,x,6 (.2.34xx1)
9,7,0,9,0,x,x,6 (32.4.xx1)
0,7,6,x,x,9,0,9 (.21xx3.4)
9,7,6,x,x,0,0,9 (321xx..4)
0,7,6,x,9,x,0,9 (.21x3x.4)
9,7,0,x,0,x,9,6 (32.x.x41)
0,7,0,x,9,x,9,6 (.2.x3x41)
9,7,0,x,x,0,9,6 (32.xx.41)
9,7,6,x,0,x,0,9 (321x.x.4)
0,7,0,x,x,9,9,6 (.2.xx341)
0,7,x,9,9,x,0,6 (.2x34x.1)
9,7,0,x,0,11,9,x (21.x.43x)
0,7,x,x,11,9,9,0 (.1xx423.)
9,7,0,x,11,0,9,x (21.x4.3x)
11,7,x,x,9,0,9,0 (41xx2.3.)
11,7,0,x,9,0,9,x (41.x2.3x)
11,7,0,x,0,9,9,x (41.x.23x)
9,7,x,x,0,11,9,0 (21xx.43.)
0,7,x,x,9,11,9,0 (.1xx243.)
0,7,0,x,9,11,9,x (.1.x243x)
0,7,0,x,11,9,9,x (.1.x423x)
11,7,x,x,0,9,9,0 (41xx.23.)
9,7,x,x,11,0,9,0 (21xx4.3.)
11,7,x,x,9,0,0,9 (41xx2..3)
9,7,0,x,11,0,x,9 (21.x4.x3)
9,7,x,x,11,0,0,9 (21xx4..3)
0,7,x,x,11,9,0,9 (.1xx42.3)
9,7,x,x,0,11,0,9 (21xx.4.3)
0,7,x,x,9,11,0,9 (.1xx24.3)
11,7,x,x,0,9,0,9 (41xx.2.3)
0,7,0,x,9,11,x,9 (.1.x24x3)
9,7,0,x,0,11,x,9 (21.x.4x3)
0,7,0,x,11,9,x,9 (.1.x42x3)
11,7,0,x,0,9,x,9 (41.x.2x3)
11,7,0,x,9,0,x,9 (41.x2.x3)