Mandolin Chord Chart and Tabs in Modal D Tuning

레m11b9, 레−11b9
Notes: 레, 파, 라, 도, 미♭, 솔
x,6,5,0,3,0,3,0 (x43.1.2.)
x,6,5,0,0,3,3,0 (x43..12.)
x,6,3,0,3,0,5,0 (x41.2.3.)
x,6,3,0,0,3,5,0 (x41..23.)
x,6,0,0,3,0,5,3 (x4..1.32)
x,6,0,0,0,3,5,3 (x4...132)
x,6,0,0,0,3,3,5 (x4...123)
x,6,5,0,3,0,0,3 (x43.1..2)
x,6,0,0,3,0,3,5 (x4..1.23)
x,6,3,0,0,3,0,5 (x41..2.3)
x,6,3,0,3,0,0,5 (x41.2..3)
x,6,5,0,0,3,0,3 (x43..1.2)
x,x,1,0,0,3,3,5 (xx1..234)
x,x,1,0,3,0,3,5 (xx1.2.34)
x,x,1,0,3,0,5,3 (xx1.2.43)
x,x,5,0,0,3,3,1 (xx4..231)
x,x,3,0,0,3,5,1 (xx2..341)
x,x,3,0,0,3,1,5 (xx2..314)
x,x,3,0,3,0,1,5 (xx2.3.14)
x,x,5,0,3,0,3,1 (xx4.2.31)
x,x,5,0,0,3,1,3 (xx4..213)
x,x,5,0,3,0,1,3 (xx4.2.13)
x,x,3,0,3,0,5,1 (xx2.3.41)
x,x,1,0,0,3,5,3 (xx1..243)
6,10,10,0,8,0,x,0 (134.2.x.)
8,6,10,0,10,0,x,0 (213.4.x.)
6,8,10,0,10,0,x,0 (123.4.x.)
3,6,5,0,0,x,3,0 (143..x2.)
0,6,5,0,3,x,3,0 (.43.1x2.)
3,6,5,0,x,0,3,0 (143.x.2.)
10,6,10,0,8,0,0,x (314.2..x)
8,6,10,0,10,0,0,x (213.4..x)
3,x,5,0,6,0,3,0 (1x3.4.2.)
0,6,5,0,x,3,3,0 (.43.x12.)
6,x,5,0,0,3,3,0 (4x3..12.)
6,8,10,0,10,0,0,x (123.4..x)
0,x,5,0,6,3,3,0 (.x3.412.)
3,x,5,0,0,6,3,0 (1x3..42.)
0,x,5,0,3,6,3,0 (.x3.142.)
3,6,3,0,0,x,5,0 (142..x3.)
0,6,3,0,3,x,5,0 (.41.2x3.)
3,6,3,0,x,0,5,0 (142.x.3.)
6,x,3,0,3,0,5,0 (4x1.2.3.)
10,8,10,0,6,0,0,x (324.1..x)
3,x,3,0,6,0,5,0 (1x2.4.3.)
0,6,3,0,x,3,5,0 (.41.x23.)
6,x,3,0,0,3,5,0 (4x1..23.)
8,10,10,0,6,0,0,x (234.1..x)
0,x,3,0,6,3,5,0 (.x1.423.)
3,x,3,0,0,6,5,0 (1x2..43.)
0,x,3,0,3,6,5,0 (.x1.243.)
6,10,10,0,8,0,0,x (134.2..x)
10,8,10,0,6,0,x,0 (324.1.x.)
8,10,10,0,6,0,x,0 (234.1.x.)
10,6,10,0,8,0,x,0 (314.2.x.)
6,x,5,0,3,0,3,0 (4x3.1.2.)
x,6,3,0,0,3,5,x (x41..23x)
x,6,3,0,3,0,5,x (x41.2.3x)
x,6,5,0,0,3,3,x (x43..12x)
x,6,5,0,3,0,3,x (x43.1.2x)
3,6,5,0,0,x,0,3 (143..x.2)
10,8,10,0,0,6,0,x (324..1.x)
8,10,10,0,0,6,0,x (234..1.x)
6,x,0,0,0,3,3,5 (4x...123)
0,6,0,0,x,3,3,5 (.4..x123)
0,10,10,0,8,6,0,x (.34.21.x)
10,8,10,0,0,6,x,0 (324..1x.)
8,10,10,0,0,6,x,0 (234..1x.)
0,10,10,0,8,6,x,0 (.34.21x.)
0,8,10,0,10,6,x,0 (.23.41x.)
10,6,10,0,0,8,x,0 (314..2x.)
6,10,10,0,0,8,x,0 (134..2x.)
0,10,10,0,6,8,x,0 (.34.12x.)
0,6,10,0,10,8,x,0 (.13.42x.)
8,6,10,0,0,10,x,0 (213..4x.)
6,8,10,0,0,10,x,0 (123..4x.)
0,8,10,0,6,10,x,0 (.23.14x.)
0,6,10,0,8,10,x,0 (.13.24x.)
3,x,0,0,6,0,3,5 (1x..4.23)
0,8,10,0,10,6,0,x (.23.41.x)
10,6,10,0,0,8,0,x (314..2.x)
6,x,0,0,3,0,3,5 (4x..1.23)
3,6,0,0,x,0,3,5 (14..x.23)
0,6,0,0,3,x,3,5 (.4..1x23)
3,6,0,0,0,x,3,5 (14...x23)
6,10,10,0,0,8,0,x (134..2.x)
0,10,10,0,6,8,0,x (.34.12.x)
0,6,10,0,10,8,0,x (.13.42.x)
0,x,3,0,3,6,0,5 (.x1.24.3)
8,6,10,0,0,10,0,x (213..4.x)
3,x,3,0,0,6,0,5 (1x2..4.3)
0,x,3,0,6,3,0,5 (.x1.42.3)
6,8,10,0,0,10,0,x (123..4.x)
6,x,3,0,0,3,0,5 (4x1..2.3)
0,6,3,0,x,3,0,5 (.41.x2.3)
3,x,3,0,6,0,0,5 (1x2.4..3)
0,8,10,0,6,10,0,x (.23.14.x)
6,x,3,0,3,0,0,5 (4x1.2..3)
3,6,3,0,x,0,0,5 (142.x..3)
0,6,3,0,3,x,0,5 (.41.2x.3)
3,6,3,0,0,x,0,5 (142..x.3)
0,x,0,0,3,6,5,3 (.x..1432)
6,x,0,0,3,0,5,3 (4x..1.32)
3,6,0,0,x,0,5,3 (14..x.32)
0,6,0,0,3,x,5,3 (.4..1x32)
3,6,0,0,0,x,5,3 (14...x32)
3,x,0,0,0,6,5,3 (1x...432)
0,x,0,0,6,3,5,3 (.x..4132)
0,x,5,0,3,6,0,3 (.x3.14.2)
3,x,5,0,0,6,0,3 (1x3..4.2)
0,x,5,0,6,3,0,3 (.x3.41.2)
0,6,10,0,8,10,0,x (.13.24.x)
6,x,5,0,0,3,0,3 (4x3..1.2)
0,6,5,0,x,3,0,3 (.43.x1.2)
3,x,5,0,6,0,0,3 (1x3.4..2)
0,x,0,0,3,6,3,5 (.x..1423)
6,x,5,0,3,0,0,3 (4x3.1..2)
3,6,5,0,x,0,0,3 (143.x..2)
0,6,5,0,3,x,0,3 (.43.1x.2)
6,x,0,0,0,3,5,3 (4x...132)
0,6,0,0,x,3,5,3 (.4..x132)
3,x,0,0,6,0,5,3 (1x..4.32)
3,x,0,0,0,6,3,5 (1x...423)
0,x,0,0,6,3,3,5 (.x..4123)
x,6,5,0,0,3,x,3 (x43..1x2)
x,6,x,0,3,0,5,3 (x4x.1.32)
x,6,5,0,3,0,x,3 (x43.1.x2)
x,6,x,0,0,3,5,3 (x4x..132)
x,6,x,0,0,3,3,5 (x4x..123)
x,6,x,0,3,0,3,5 (x4x.1.23)
x,6,3,0,3,0,x,5 (x41.2.x3)
x,6,3,0,0,3,x,5 (x41..2x3)
0,6,0,0,8,10,10,x (.1..234x)
6,10,x,0,0,8,10,0 (13x..24.)
10,6,x,0,0,8,10,0 (31x..24.)
0,8,x,0,10,6,10,0 (.2x.314.)
0,10,x,0,8,6,10,0 (.3x.214.)
8,10,x,0,0,6,10,0 (23x..14.)
10,8,x,0,0,6,10,0 (32x..14.)
6,8,x,0,10,0,10,0 (12x.3.4.)
8,6,x,0,10,0,10,0 (21x.3.4.)
6,10,x,0,8,0,10,0 (13x.2.4.)
10,6,x,0,8,0,10,0 (31x.2.4.)
8,10,x,0,6,0,10,0 (23x.1.4.)
6,8,0,0,10,0,10,x (12..3.4x)
10,8,x,0,6,0,10,0 (32x.1.4.)
0,6,x,0,8,10,10,0 (.1x.234.)
0,8,0,0,6,10,10,x (.2..134x)
6,8,0,0,0,10,10,x (12...34x)
8,6,0,0,0,10,10,x (21...34x)
0,8,x,0,6,10,10,0 (.2x.134.)
0,6,0,0,10,8,10,x (.1..324x)
0,10,0,0,6,8,10,x (.3..124x)
6,10,0,0,0,8,10,x (13...24x)
10,6,0,0,0,8,10,x (31...24x)
0,8,0,0,10,6,10,x (.2..314x)
0,10,0,0,8,6,10,x (.3..214x)
6,8,x,0,0,10,10,0 (12x..34.)
8,6,x,0,0,10,10,0 (21x..34.)
10,8,0,0,6,0,10,x (32..1.4x)
0,6,x,0,10,8,10,0 (.1x.324.)
8,10,0,0,6,0,10,x (23..1.4x)
10,6,0,0,8,0,10,x (31..2.4x)
6,10,0,0,8,0,10,x (13..2.4x)
0,10,x,0,6,8,10,0 (.3x.124.)
8,6,0,0,10,0,10,x (21..3.4x)
10,8,0,0,0,6,10,x (32...14x)
8,10,0,0,0,6,10,x (23...14x)
10,6,0,0,0,8,x,10 (31...2x4)
8,10,x,0,6,0,0,10 (23x.1..4)
0,8,0,0,10,6,x,10 (.2..31x4)
0,10,0,0,8,6,x,10 (.3..21x4)
6,8,x,0,0,10,0,10 (12x..3.4)
8,6,x,0,0,10,0,10 (21x..3.4)
0,6,x,0,10,8,0,10 (.1x.32.4)
0,10,x,0,6,8,0,10 (.3x.12.4)
8,10,0,0,0,6,x,10 (23...1x4)
6,10,x,0,0,8,0,10 (13x..2.4)
10,8,0,0,0,6,x,10 (32...1x4)
10,6,x,0,0,8,0,10 (31x..2.4)
6,8,0,0,10,0,x,10 (12..3.x4)
8,6,0,0,10,0,x,10 (21..3.x4)
0,8,x,0,10,6,0,10 (.2x.31.4)
0,10,x,0,8,6,0,10 (.3x.21.4)
8,10,x,0,0,6,0,10 (23x..1.4)
0,6,x,0,8,10,0,10 (.1x.23.4)
6,10,0,0,8,0,x,10 (13..2.x4)
10,8,x,0,0,6,0,10 (32x..1.4)
10,6,0,0,8,0,x,10 (31..2.x4)
6,8,x,0,10,0,0,10 (12x.3..4)
8,10,0,0,6,0,x,10 (23..1.x4)
10,8,x,0,6,0,0,10 (32x.1..4)
10,8,0,0,6,0,x,10 (32..1.x4)
0,6,0,0,8,10,x,10 (.1..23x4)
0,8,0,0,6,10,x,10 (.2..13x4)
8,6,x,0,10,0,0,10 (21x.3..4)
6,8,0,0,0,10,x,10 (12...3x4)
0,8,x,0,6,10,0,10 (.2x.13.4)
8,6,0,0,0,10,x,10 (21...3x4)
6,10,x,0,8,0,0,10 (13x.2..4)
0,6,0,0,10,8,x,10 (.1..32x4)
0,10,0,0,6,8,x,10 (.3..12x4)
10,6,x,0,8,0,0,10 (31x.2..4)
6,10,0,0,0,8,x,10 (13...2x4)
3,6,3,0,0,x,5,x (142..x3x)
3,6,5,0,0,x,3,x (143..x2x)
3,x,3,0,0,6,5,x (1x2..43x)
0,x,3,0,6,3,5,x (.x1.423x)
6,x,3,0,0,3,5,x (4x1..23x)
0,6,3,0,x,3,5,x (.41.x23x)
3,x,3,0,6,0,5,x (1x2.4.3x)
6,x,3,0,3,0,5,x (4x1.2.3x)
3,6,3,0,x,0,5,x (142.x.3x)
0,6,3,0,3,x,5,x (.41.2x3x)
0,x,3,0,3,6,5,x (.x1.243x)
0,x,5,0,3,6,3,x (.x3.142x)
3,x,5,0,0,6,3,x (1x3..42x)
0,x,5,0,6,3,3,x (.x3.412x)
6,x,5,0,0,3,3,x (4x3..12x)
0,6,5,0,x,3,3,x (.43.x12x)
3,x,5,0,6,0,3,x (1x3.4.2x)
6,x,5,0,3,0,3,x (4x3.1.2x)
3,6,5,0,x,0,3,x (143.x.2x)
0,6,5,0,3,x,3,x (.43.1x2x)
0,x,x,0,6,3,3,5 (.xx.4123)
0,6,x,0,3,x,3,5 (.4x.1x23)
0,x,3,0,3,6,x,5 (.x1.24x3)
6,x,5,0,0,3,x,3 (4x3..1x2)
3,6,x,0,x,0,3,5 (14x.x.23)
3,6,5,0,0,x,x,3 (143..xx2)
0,x,5,0,6,3,x,3 (.x3.41x2)
6,x,x,0,3,0,3,5 (4xx.1.23)
3,6,3,0,x,0,x,5 (142.x.x3)
0,x,3,0,6,3,x,5 (.x1.42x3)
6,x,3,0,0,3,x,5 (4x1..2x3)
0,6,5,0,3,x,x,3 (.43.1xx2)
3,x,x,0,6,0,3,5 (1xx.4.23)
3,6,5,0,x,0,x,3 (143.x.x2)
0,6,x,0,x,3,3,5 (.4x.x123)
6,x,5,0,3,0,x,3 (4x3.1.x2)
3,x,5,0,0,6,x,3 (1x3..4x2)
6,x,x,0,0,3,3,5 (4xx..123)
0,6,3,0,3,x,x,5 (.41.2xx3)
0,6,3,0,x,3,x,5 (.41.x2x3)
3,x,5,0,6,0,x,3 (1x3.4.x2)
3,x,3,0,6,0,x,5 (1x2.4.x3)
3,x,3,0,0,6,x,5 (1x2..4x3)
3,6,x,0,0,x,3,5 (14x..x23)
3,x,x,0,0,6,3,5 (1xx..423)
6,x,3,0,3,0,x,5 (4x1.2.x3)
0,x,x,0,3,6,3,5 (.xx.1423)
0,6,5,0,x,3,x,3 (.43.x1x2)
3,6,3,0,0,x,x,5 (142..xx3)
0,x,x,0,3,6,5,3 (.xx.1432)
3,x,x,0,0,6,5,3 (1xx..432)
0,x,x,0,6,3,5,3 (.xx.4132)
6,x,x,0,0,3,5,3 (4xx..132)
0,x,5,0,3,6,x,3 (.x3.14x2)
0,6,x,0,x,3,5,3 (.4x.x132)
3,x,x,0,6,0,5,3 (1xx.4.32)
6,x,x,0,3,0,5,3 (4xx.1.32)
3,6,x,0,0,x,5,3 (14x..x32)
3,6,x,0,x,0,5,3 (14x.x.32)
0,6,x,0,3,x,5,3 (.4x.1x32)
0,x,3,0,x,3,1,5 (.x2.x314)
0,x,1,0,3,x,5,3 (.x1.2x43)
3,x,1,0,x,0,5,3 (2x1.x.43)
0,x,5,0,x,3,1,3 (.x4.x213)
3,x,5,0,x,0,1,3 (2x4.x.13)
0,x,5,0,3,x,1,3 (.x4.2x13)
3,x,5,0,0,x,1,3 (2x4..x13)
0,x,1,0,x,3,5,3 (.x1.x243)
0,x,1,0,x,3,3,5 (.x1.x234)
3,x,1,0,x,0,3,5 (2x1.x.34)
0,x,1,0,3,x,3,5 (.x1.2x34)
3,x,1,0,0,x,3,5 (2x1..x34)
3,x,1,0,0,x,5,3 (2x1..x43)
3,x,3,0,x,0,1,5 (2x3.x.14)
0,x,3,0,3,x,1,5 (.x2.3x14)
3,x,3,0,0,x,1,5 (2x3..x14)
3,x,5,0,x,0,3,1 (2x4.x.31)
3,x,5,0,0,x,3,1 (2x4..x31)
0,x,3,0,x,3,5,1 (.x2.x341)
0,x,5,0,3,x,3,1 (.x4.2x31)
3,x,3,0,x,0,5,1 (2x3.x.41)
0,x,3,0,3,x,5,1 (.x2.3x41)
3,x,3,0,0,x,5,1 (2x3..x41)
0,x,5,0,x,3,3,1 (.x4.x231)