Mandolin Chord Chart and Tabs in Modal D Tuning

Ré+M9, Ré augmaj9
Notes: Ré, Fa♯, La♯, Do♯, Mi
x,x,4,0,4,1,2,0 (xx3.412.)
x,x,2,0,1,4,4,0 (xx2.134.)
x,x,4,0,1,4,2,0 (xx3.142.)
x,x,2,0,4,1,4,0 (xx2.314.)
x,x,4,0,1,4,0,2 (xx3.14.2)
x,x,2,0,4,1,0,4 (xx2.31.4)
x,x,4,0,4,1,0,2 (xx3.41.2)
x,x,0,0,1,4,2,4 (xx..1324)
x,x,0,0,4,1,2,4 (xx..3124)
x,x,2,0,1,4,0,4 (xx2.13.4)
x,x,0,0,4,1,4,2 (xx..3142)
x,x,0,0,1,4,4,2 (xx..1342)
x,x,8,0,7,4,4,0 (xx4.312.)
x,x,4,0,4,7,8,0 (xx1.234.)
x,x,4,0,7,4,8,0 (xx1.324.)
x,x,8,0,4,7,4,0 (xx4.132.)
x,x,8,0,7,9,11,0 (xx2.134.)
x,x,4,0,4,7,0,8 (xx1.23.4)
x,x,8,0,4,7,0,4 (xx4.13.2)
x,x,0,0,7,4,8,4 (xx..3142)
x,x,0,0,4,7,8,4 (xx..1342)
x,x,0,0,4,7,4,8 (xx..1324)
x,x,8,0,7,4,0,4 (xx4.31.2)
x,x,0,0,7,4,4,8 (xx..3124)
x,x,8,0,9,7,11,0 (xx2.314.)
x,x,11,0,7,9,8,0 (xx4.132.)
x,x,11,0,9,7,8,0 (xx4.312.)
x,x,4,0,7,4,0,8 (xx1.32.4)
x,x,0,0,7,9,8,11 (xx..1324)
x,x,8,0,7,9,0,11 (xx2.13.4)
x,x,0,0,7,9,11,8 (xx..1342)
x,x,11,0,7,9,0,8 (xx4.13.2)
x,x,8,0,9,7,0,11 (xx2.31.4)
x,x,0,0,9,7,11,8 (xx..3142)
x,x,11,0,9,7,0,8 (xx4.31.2)
x,x,0,0,9,7,8,11 (xx..3124)
x,x,x,0,7,9,11,8 (xxx.1342)
x,x,x,0,7,9,8,11 (xxx.1324)
x,x,x,0,9,7,8,11 (xxx.3124)
x,x,x,0,9,7,11,8 (xxx.3142)
x,x,11,0,7,9,8,x (xx4.132x)
x,x,8,x,7,9,11,0 (xx2x134.)
x,x,11,x,7,9,8,0 (xx4x132.)
x,x,11,x,9,7,8,0 (xx4x312.)
x,x,8,x,9,7,11,0 (xx2x314.)
x,x,11,0,9,7,8,x (xx4.312x)
x,x,8,0,9,7,11,x (xx2.314x)
x,x,8,0,7,9,11,x (xx2.134x)
x,x,11,x,9,7,0,8 (xx4x31.2)
x,x,0,x,7,9,8,11 (xx.x1324)
x,x,8,0,9,7,x,11 (xx2.31x4)
x,x,0,x,9,7,8,11 (xx.x3124)
x,x,8,x,7,9,0,11 (xx2x13.4)
x,x,8,0,7,9,x,11 (xx2.13x4)
x,x,8,x,9,7,0,11 (xx2x31.4)
x,x,11,0,7,9,x,8 (xx4.13x2)
x,x,0,x,9,7,11,8 (xx.x3142)
x,x,11,0,9,7,x,8 (xx4.31x2)
x,x,11,x,7,9,0,8 (xx4x13.2)
x,x,0,x,7,9,11,8 (xx.x1342)
1,x,4,0,4,x,2,0 (1x3.4x2.)
4,x,4,0,1,x,2,0 (3x4.1x2.)
4,x,4,0,x,1,2,0 (3x4.x12.)
1,x,4,0,x,4,2,0 (1x3.x42.)
4,x,2,0,1,x,4,0 (3x2.1x4.)
1,x,2,0,4,x,4,0 (1x2.3x4.)
1,x,2,0,x,4,4,0 (1x2.x34.)
4,x,2,0,x,1,4,0 (3x2.x14.)
4,x,4,0,1,x,0,2 (3x4.1x.2)
4,x,0,0,1,x,4,2 (3x..1x42)
1,x,0,0,4,x,4,2 (1x..3x42)
4,x,0,0,1,x,2,4 (3x..1x24)
1,x,0,0,4,x,2,4 (1x..3x24)
4,x,0,0,x,1,2,4 (3x..x124)
4,x,0,0,x,1,4,2 (3x..x142)
1,x,0,0,x,4,2,4 (1x..x324)
1,x,4,0,4,x,0,2 (1x3.4x.2)
1,x,0,0,x,4,4,2 (1x..x342)
4,x,4,0,x,1,0,2 (3x4.x1.2)
4,x,2,0,1,x,0,4 (3x2.1x.4)
1,x,2,0,4,x,0,4 (1x2.3x.4)
4,x,2,0,x,1,0,4 (3x2.x1.4)
1,x,4,0,x,4,0,2 (1x3.x4.2)
1,x,2,0,x,4,0,4 (1x2.x3.4)
7,x,8,0,4,x,4,0 (3x4.1x2.)
4,x,8,0,7,x,4,0 (1x4.3x2.)
7,x,8,0,x,4,4,0 (3x4.x12.)
4,x,8,0,x,7,4,0 (1x4.x32.)
7,x,4,0,4,x,8,0 (3x1.2x4.)
4,x,4,0,7,x,8,0 (1x2.3x4.)
7,x,4,0,x,4,8,0 (3x1.x24.)
4,x,4,0,x,7,8,0 (1x2.x34.)
7,x,0,0,x,4,8,4 (3x..x142)
9,x,8,0,7,x,11,0 (3x2.1x4.)
4,x,0,0,x,7,8,4 (1x..x342)
7,x,8,0,x,4,0,4 (3x4.x1.2)
9,x,11,0,x,7,8,0 (3x4.x12.)
7,x,8,0,9,x,11,0 (1x2.3x4.)
4,x,8,0,x,7,0,4 (1x4.x3.2)
7,x,11,0,x,9,8,0 (1x4.x32.)
4,x,0,0,x,7,4,8 (1x..x324)
9,x,8,0,x,7,11,0 (3x2.x14.)
7,x,4,0,4,x,0,8 (3x1.2x.4)
7,x,0,0,4,x,8,4 (3x..1x42)
4,x,4,0,7,x,0,8 (1x2.3x.4)
7,x,0,0,x,4,4,8 (3x..x124)
4,x,0,0,7,x,4,8 (1x..3x24)
7,x,0,0,4,x,4,8 (3x..1x24)
7,x,4,0,x,4,0,8 (3x1.x2.4)
7,x,11,0,9,x,8,0 (1x4.3x2.)
7,x,8,0,4,x,0,4 (3x4.1x.2)
4,x,4,0,x,7,0,8 (1x2.x3.4)
4,x,8,0,7,x,0,4 (1x4.3x.2)
9,x,11,0,7,x,8,0 (3x4.1x2.)
7,x,8,0,x,9,11,0 (1x2.x34.)
4,x,0,0,7,x,8,4 (1x..3x42)
9,x,8,0,7,x,0,11 (3x2.1x.4)
7,x,8,0,9,x,0,11 (1x2.3x.4)
9,x,11,0,7,x,0,8 (3x4.1x.2)
9,x,0,0,7,x,11,8 (3x..1x42)
7,x,0,0,9,x,11,8 (1x..3x42)
9,x,0,0,x,7,11,8 (3x..x142)
7,x,0,0,x,9,11,8 (1x..x342)
7,x,11,0,x,9,0,8 (1x4.x3.2)
7,x,11,0,9,x,0,8 (1x4.3x.2)
9,x,11,0,x,7,0,8 (3x4.x1.2)
9,x,8,0,x,7,0,11 (3x2.x1.4)
7,x,8,0,x,9,0,11 (1x2.x3.4)
9,x,0,0,7,x,8,11 (3x..1x24)
7,x,0,0,9,x,8,11 (1x..3x24)
9,x,0,0,x,7,8,11 (3x..x124)
7,x,0,0,x,9,8,11 (1x..x324)
7,x,8,x,x,9,11,0 (1x2xx34.)
9,x,8,x,x,7,11,0 (3x2xx14.)
9,x,11,x,x,7,8,0 (3x4xx12.)
7,x,11,x,9,x,8,0 (1x4x3x2.)
7,x,8,x,9,x,11,0 (1x2x3x4.)
9,x,11,x,7,x,8,0 (3x4x1x2.)
7,x,8,0,x,9,11,x (1x2.x34x)
9,x,8,x,7,x,11,0 (3x2x1x4.)
7,x,11,0,9,x,8,x (1x4.3x2x)
7,x,11,x,x,9,8,0 (1x4xx32.)
9,x,8,0,x,7,11,x (3x2.x14x)
7,x,8,0,9,x,11,x (1x2.3x4x)
9,x,8,0,7,x,11,x (3x2.1x4x)
9,x,11,0,7,x,8,x (3x4.1x2x)
7,x,11,0,x,9,8,x (1x4.x32x)
9,x,11,0,x,7,8,x (3x4.x12x)
7,x,0,x,9,x,11,8 (1x.x3x42)
7,x,x,0,9,x,11,8 (1xx.3x42)
9,x,8,x,7,x,0,11 (3x2x1x.4)
7,x,11,x,9,x,0,8 (1x4x3x.2)
7,x,8,x,9,x,0,11 (1x2x3x.4)
9,x,0,x,x,7,11,8 (3x.xx142)
9,x,8,x,x,7,0,11 (3x2xx1.4)
9,x,x,0,x,7,11,8 (3xx.x142)
9,x,11,x,x,7,0,8 (3x4xx1.2)
7,x,11,0,9,x,x,8 (1x4.3xx2)
7,x,8,x,x,9,0,11 (1x2xx3.4)
9,x,11,0,7,x,x,8 (3x4.1xx2)
9,x,11,x,7,x,0,8 (3x4x1x.2)
7,x,0,x,x,9,11,8 (1x.xx342)
9,x,0,x,7,x,8,11 (3x.x1x24)
9,x,x,0,7,x,8,11 (3xx.1x24)
7,x,x,0,x,9,11,8 (1xx.x342)
7,x,0,x,9,x,8,11 (1x.x3x24)
7,x,x,0,9,x,8,11 (1xx.3x24)
7,x,11,0,x,9,x,8 (1x4.x3x2)
9,x,0,x,x,7,8,11 (3x.xx124)
9,x,x,0,x,7,8,11 (3xx.x124)
9,x,11,0,x,7,x,8 (3x4.x1x2)
9,x,0,x,7,x,11,8 (3x.x1x42)
9,x,x,0,7,x,11,8 (3xx.1x42)
9,x,8,0,7,x,x,11 (3x2.1xx4)
7,x,0,x,x,9,8,11 (1x.xx324)
7,x,x,0,x,9,8,11 (1xx.x324)
7,x,8,0,9,x,x,11 (1x2.3xx4)
9,x,8,0,x,7,x,11 (3x2.x1x4)
7,x,11,x,x,9,0,8 (1x4xx3.2)
7,x,8,0,x,9,x,11 (1x2.x3x4)