Mandolin Chord Chart and Tabs in Modal D Tuning

Do#+M7b9, Do#+Δb9, Do#M7♯5b9, Do#M7+5b9, Do#Δ♯5b9, Do#Δ+5b9
Notes: Do♯, Mi♯, Solx, Si♯, Ré
x,4,3,0,3,0,7,0 (x31.2.4.)
x,4,7,0,0,3,3,0 (x34..12.)
x,4,3,0,0,3,7,0 (x31..24.)
x,4,7,0,3,0,3,0 (x34.1.2.)
x,4,3,0,0,3,0,7 (x31..2.4)
x,4,0,0,0,3,3,7 (x3...124)
x,4,7,0,3,0,0,3 (x34.1..2)
x,4,0,0,0,3,7,3 (x3...142)
x,4,0,0,3,0,3,7 (x3..1.24)
x,4,0,0,3,0,7,3 (x3..1.42)
x,4,3,0,3,0,0,7 (x31.2..4)
x,4,7,0,0,3,0,3 (x34..1.2)
x,4,3,0,3,0,x,0 (x31.2.x.)
x,4,3,0,3,0,0,x (x31.2..x)
x,4,3,3,3,0,x,0 (x4123.x.)
x,4,3,0,0,3,0,x (x31..2.x)
x,4,3,3,3,0,0,x (x4123..x)
x,4,3,0,0,3,x,0 (x31..2x.)
x,4,x,0,0,3,3,0 (x3x..12.)
x,4,3,3,0,3,x,0 (x412.3x.)
x,4,x,0,3,0,3,0 (x3x.1.2.)
x,4,0,0,0,3,3,x (x3...12x)
x,4,3,3,0,3,0,x (x412.3.x)
x,4,0,0,3,0,3,x (x3..1.2x)
x,4,0,3,3,0,3,x (x4.12.3x)
x,4,x,3,3,0,3,0 (x4x12.3.)
x,4,x,3,0,3,3,0 (x4x1.23.)
x,4,x,0,0,3,0,3 (x3x..1.2)
x,4,0,3,0,3,3,x (x4.1.23x)
x,4,0,0,0,3,x,3 (x3...1x2)
x,4,x,0,3,0,0,3 (x3x.1..2)
x,4,0,0,3,0,x,3 (x3..1.x2)
x,4,7,3,3,0,x,0 (x3412.x.)
x,4,x,3,0,3,0,3 (x4x1.2.3)
x,4,0,3,3,0,x,3 (x4.12.x3)
x,4,x,3,3,0,0,3 (x4x12..3)
x,4,7,3,3,0,0,x (x3412..x)
x,4,0,3,0,3,x,3 (x4.1.2x3)
x,4,7,3,3,5,3,x (x241131x)
x,4,3,3,3,5,7,x (x211134x)
x,4,7,3,0,3,x,0 (x341.2x.)
x,4,3,3,5,3,7,x (x211314x)
x,4,7,3,5,3,3,x (x241311x)
x,4,7,3,0,3,0,x (x341.2.x)
0,4,7,0,3,x,3,0 (.34.1x2.)
0,4,3,0,x,3,7,0 (.31.x24.)
0,4,7,0,x,3,3,0 (.34.x12.)
3,4,3,0,0,x,7,0 (132..x4.)
3,4,7,0,0,x,3,0 (134..x2.)
3,4,7,0,x,0,3,0 (134.x.2.)
0,4,3,0,3,x,7,0 (.31.2x4.)
3,4,3,0,x,0,7,0 (132.x.4.)
x,4,x,3,3,0,7,0 (x3x12.4.)
x,4,3,0,0,3,7,x (x31..24x)
x,4,0,3,0,3,7,x (x3.1.24x)
x,4,x,3,3,5,7,3 (x2x11341)
x,4,x,3,3,5,3,7 (x2x11314)
x,4,7,0,0,3,3,x (x34..12x)
x,4,7,0,3,0,3,x (x34.1.2x)
x,4,3,3,3,5,x,7 (x21113x4)
x,4,x,3,5,3,7,3 (x2x13141)
x,4,x,3,5,3,3,7 (x2x13114)
x,4,7,3,5,3,x,3 (x24131x1)
x,4,0,3,3,0,7,x (x3.12.4x)
x,4,7,3,3,5,x,3 (x24113x1)
x,4,3,3,5,3,x,7 (x21131x4)
x,4,x,3,0,3,7,0 (x3x1.24.)
x,4,3,0,3,0,7,x (x31.2.4x)
3,4,7,0,0,x,0,3 (134..x.2)
3,4,7,0,x,0,0,3 (134.x..2)
0,4,0,0,x,3,3,7 (.3..x124)
0,4,7,0,x,3,0,3 (.34.x1.2)
3,4,0,0,0,x,7,3 (13...x42)
0,4,0,0,3,x,7,3 (.3..1x42)
3,4,0,0,x,0,7,3 (13..x.42)
3,4,0,0,x,0,3,7 (13..x.24)
0,4,0,0,x,3,7,3 (.3..x142)
0,4,0,0,3,x,3,7 (.3..1x24)
3,4,0,0,0,x,3,7 (13...x24)
0,4,3,0,x,3,0,7 (.31.x2.4)
3,4,3,0,x,0,0,7 (132.x..4)
0,4,7,0,3,x,0,3 (.34.1x.2)
0,4,3,0,3,x,0,7 (.31.2x.4)
3,4,3,0,0,x,0,7 (132..x.4)
x,4,7,0,3,0,x,3 (x34.1.x2)
x,4,0,3,0,3,x,7 (x3.1.2x4)
x,4,x,3,3,0,0,7 (x3x12..4)
x,4,3,0,3,0,x,7 (x31.2.x4)
x,4,x,3,0,3,0,7 (x3x1.2.4)
x,4,x,0,0,3,7,3 (x3x..142)
x,4,0,3,3,0,x,7 (x3.12.x4)
x,4,x,0,3,0,7,3 (x3x.1.42)
x,4,x,0,3,0,3,7 (x3x.1.24)
x,4,7,0,0,3,x,3 (x34..1x2)
x,4,x,0,0,3,3,7 (x3x..124)
x,4,3,0,0,3,x,7 (x31..2x4)
3,4,3,0,x,0,0,x (132.x..x)
3,4,3,0,0,x,0,x (132..x.x)
3,4,3,0,x,0,x,0 (132.x.x.)
3,4,3,0,0,x,x,0 (132..xx.)
0,4,3,0,3,x,x,0 (.31.2xx.)
0,4,3,0,3,x,0,x (.31.2x.x)
3,4,3,3,0,x,0,x (1423.x.x)
3,4,3,3,x,0,0,x (1423x..x)
3,4,3,3,x,0,x,0 (1423x.x.)
3,4,3,3,0,x,x,0 (1423.xx.)
0,4,3,3,3,x,0,x (.4123x.x)
0,4,3,0,x,3,0,x (.31.x2.x)
0,4,3,0,x,3,x,0 (.31.x2x.)
0,4,3,3,3,x,x,0 (.4123xx.)
0,4,x,0,x,3,3,0 (.3x.x12.)
0,4,3,3,x,3,0,x (.412x3.x)
0,4,0,0,3,x,3,x (.3..1x2x)
3,4,x,0,0,x,3,0 (13x..x2.)
0,4,0,0,x,3,3,x (.3..x12x)
3,4,0,0,0,x,3,x (13...x2x)
3,4,0,0,x,0,3,x (13..x.2x)
0,4,3,3,x,3,x,0 (.412x3x.)
3,4,x,0,x,0,3,0 (13x.x.2.)
0,4,x,0,3,x,3,0 (.3x.1x2.)
3,4,x,3,0,x,3,0 (14x2.x3.)
0,4,0,0,x,3,x,3 (.3..x1x2)
3,4,0,3,x,0,3,x (14.2x.3x)
0,4,x,3,x,3,3,0 (.4x1x23.)
3,4,x,3,x,0,3,0 (14x2x.3.)
3,4,7,3,0,x,0,x (1342.x.x)
3,4,7,3,x,0,0,x (1342x..x)
3,4,0,0,x,0,x,3 (13..x.x2)
3,4,7,3,x,0,x,0 (1342x.x.)
3,4,x,0,0,x,0,3 (13x..x.2)
3,4,0,0,0,x,x,3 (13...xx2)
3,4,0,3,0,x,3,x (14.2.x3x)
0,4,x,0,3,x,0,3 (.3x.1x.2)
0,4,x,0,x,3,0,3 (.3x.x1.2)
0,4,0,3,3,x,3,x (.4.12x3x)
3,4,x,0,x,0,0,3 (13x.x..2)
0,4,x,3,3,x,3,0 (.4x12x3.)
3,4,7,3,0,x,x,0 (1342.xx.)
0,4,0,0,3,x,x,3 (.3..1xx2)
0,4,0,3,x,3,3,x (.4.1x23x)
3,4,x,3,x,0,0,3 (14x2x..3)
0,4,7,3,3,x,x,0 (.3412xx.)
0,4,x,3,x,3,0,3 (.4x1x2.3)
3,4,x,3,0,x,0,3 (14x2.x.3)
0,4,x,3,3,x,0,3 (.4x12x.3)
3,4,0,3,x,0,x,3 (14.2x.x3)
0,4,0,3,3,x,x,3 (.4.12xx3)
0,4,7,3,3,x,0,x (.3412x.x)
3,4,0,3,0,x,x,3 (14.2.xx3)
0,4,0,3,x,3,x,3 (.4.1x2x3)
3,4,3,3,x,5,7,x (1211x34x)
5,4,7,3,3,x,3,x (32411x1x)
3,4,7,3,5,x,3,x (12413x1x)
0,4,7,3,x,3,x,0 (.341x2x.)
5,4,3,3,x,3,7,x (3211x14x)
0,4,7,3,x,3,0,x (.341x2.x)
5,4,3,3,3,x,7,x (32111x4x)
3,4,3,3,5,x,7,x (12113x4x)
5,4,7,3,x,3,3,x (3241x11x)
3,4,7,3,x,5,3,x (1241x31x)
3,4,0,3,x,0,7,x (13.2x.4x)
0,4,x,3,3,x,7,0 (.3x12x4.)
5,4,x,3,x,3,7,3 (32x1x141)
3,4,0,3,0,x,7,x (13.2.x4x)
3,4,3,0,0,x,7,x (132..x4x)
0,4,0,3,3,x,7,x (.3.12x4x)
3,4,x,3,x,5,7,3 (12x1x341)
3,4,x,3,x,0,7,0 (13x2x.4.)
3,4,x,3,x,5,3,7 (12x1x314)
3,4,x,3,0,x,7,0 (13x2.x4.)
0,4,x,3,x,3,7,0 (.3x1x24.)
5,4,x,3,x,3,3,7 (32x1x114)
5,4,3,3,3,x,x,7 (32111xx4)
3,4,3,3,5,x,x,7 (12113xx4)
5,4,7,3,3,x,x,3 (32411xx1)
3,4,7,3,5,x,x,3 (12413xx1)
3,4,x,3,5,x,3,7 (12x13x14)
0,4,7,0,x,3,3,x (.34.x12x)
5,4,x,3,3,x,3,7 (32x11x14)
5,4,7,3,x,3,x,3 (3241x1x1)
5,4,3,3,x,3,x,7 (3211x1x4)
3,4,x,3,5,x,7,3 (12x13x41)
5,4,x,3,3,x,7,3 (32x11x41)
3,4,7,0,x,0,3,x (134.x.2x)
3,4,3,3,x,5,x,7 (1211x3x4)
3,4,3,0,x,0,7,x (132.x.4x)
3,4,7,3,x,5,x,3 (1241x3x1)
3,4,7,0,0,x,3,x (134..x2x)
0,4,3,0,3,x,7,x (.31.2x4x)
0,4,0,3,x,3,7,x (.3.1x24x)
0,4,3,0,x,3,7,x (.31.x24x)
0,4,7,0,3,x,3,x (.34.1x2x)
3,4,x,0,x,0,3,7 (13x.x.24)
3,4,x,3,x,0,0,7 (13x2x..4)
0,4,x,3,3,x,0,7 (.3x12x.4)
0,4,x,3,x,3,0,7 (.3x1x2.4)
3,4,x,3,0,x,0,7 (13x2.x.4)
0,4,x,0,3,x,7,3 (.3x.1x42)
3,4,x,0,0,x,3,7 (13x..x24)
0,4,0,3,x,3,x,7 (.3.1x2x4)
0,4,x,0,3,x,3,7 (.3x.1x24)
0,4,7,0,x,3,x,3 (.34.x1x2)
0,4,3,0,x,3,x,7 (.31.x2x4)
3,4,x,0,x,0,7,3 (13x.x.42)
3,4,x,0,0,x,7,3 (13x..x42)
3,4,7,0,x,0,x,3 (134.x.x2)
3,4,0,3,x,0,x,7 (13.2x.x4)
3,4,3,0,x,0,x,7 (132.x.x4)
0,4,x,0,x,3,3,7 (.3x.x124)
0,4,7,0,3,x,x,3 (.34.1xx2)
0,4,0,3,3,x,x,7 (.3.12xx4)
3,4,7,0,0,x,x,3 (134..xx2)
0,4,3,0,3,x,x,7 (.31.2xx4)
3,4,0,3,0,x,x,7 (13.2.xx4)
3,4,3,0,0,x,x,7 (132..xx4)
0,4,x,0,x,3,7,3 (.3x.x142)