Mandolin Chord Chart and Tabs in Modal D Tuning

미#7/6sus2, 미#7,6sus2
Notes: 미♯, 솔x, 시♯, 도x, 레♯, 파x
10,8,0,10,6,0,0,0 (32.41...)
6,8,0,10,10,0,0,0 (12.34...)
6,8,0,10,0,10,0,0 (12.3.4..)
0,8,0,10,10,6,0,0 (.2.341..)
0,8,0,10,6,10,0,0 (.2.314..)
10,8,0,10,0,6,0,0 (32.4.1..)
x,x,5,3,3,0,1,0 (xx423.1.)
x,x,1,3,0,3,5,0 (xx12.34.)
x,x,1,3,3,0,5,0 (xx123.4.)
x,x,5,3,0,3,1,0 (xx42.31.)
x,x,0,3,3,0,1,5 (xx.23.14)
x,x,1,3,0,3,0,5 (xx12.3.4)
x,x,0,3,0,3,1,5 (xx.2.314)
x,x,5,3,0,3,0,1 (xx42.3.1)
x,x,0,3,0,3,5,1 (xx.2.341)
x,x,5,3,3,0,0,1 (xx423..1)
x,x,1,3,3,0,0,5 (xx123..4)
x,x,0,3,3,0,5,1 (xx.23.41)
6,x,5,3,3,0,0,0 (4x312...)
3,x,5,3,6,0,0,0 (1x324...)
3,x,5,3,0,6,0,0 (1x32.4..)
6,x,5,3,0,3,0,0 (4x31.2..)
0,x,5,3,6,3,0,0 (.x3142..)
0,x,5,3,3,6,0,0 (.x3124..)
0,x,5,3,3,0,1,0 (.x423.1.)
3,x,1,3,0,0,5,0 (2x13..4.)
0,x,5,3,0,3,1,0 (.x42.31.)
0,x,1,3,0,3,5,0 (.x12.34.)
3,x,5,3,0,0,1,0 (2x43..1.)
0,x,1,3,3,0,5,0 (.x123.4.)
0,x,0,3,6,3,5,0 (.x.1423.)
0,x,0,3,3,6,5,0 (.x.1243.)
6,x,0,3,3,0,5,0 (4x.12.3.)
3,x,0,3,0,6,5,0 (1x.2.43.)
6,x,0,3,0,3,5,0 (4x.1.23.)
3,x,0,3,6,0,5,0 (1x.24.3.)
0,x,1,3,3,0,0,5 (.x123..4)
0,x,5,3,0,3,0,1 (.x42.3.1)
3,x,1,3,0,0,0,5 (2x13...4)
0,x,5,3,3,0,0,1 (.x423..1)
3,x,5,3,0,0,0,1 (2x43...1)
0,x,0,3,3,0,1,5 (.x.23.14)
0,x,0,3,0,3,1,5 (.x.2.314)
0,x,0,3,0,3,5,1 (.x.2.341)
3,x,0,3,0,0,5,1 (2x.3..41)
0,x,0,3,3,0,5,1 (.x.23.41)
3,x,0,3,0,0,1,5 (2x.3..14)
0,x,1,3,0,3,0,5 (.x12.3.4)
10,8,x,10,6,0,0,0 (32x41...)
6,8,x,10,10,0,0,0 (12x34...)
10,8,0,10,6,0,x,0 (32.41.x.)
6,x,0,3,3,0,0,5 (4x.12..3)
3,x,0,3,6,0,0,5 (1x.24..3)
10,8,10,x,6,0,0,0 (324x1...)
6,x,0,3,0,3,0,5 (4x.1.2.3)
6,8,0,10,10,0,x,0 (12.34.x.)
6,8,10,x,10,0,0,0 (123x4...)
0,x,0,3,6,3,0,5 (.x.142.3)
3,x,0,3,0,6,0,5 (1x.2.4.3)
0,x,0,3,3,6,0,5 (.x.124.3)
6,8,0,10,10,0,0,x (12.34..x)
10,8,0,10,6,0,0,x (32.41..x)
6,8,0,10,0,10,0,x (12.3.4.x)
0,8,0,10,6,10,0,x (.2.314.x)
10,8,0,10,0,6,0,x (32.4.1.x)
6,8,0,10,0,10,x,0 (12.3.4x.)
10,8,0,10,0,6,x,0 (32.4.1x.)
6,8,10,x,0,10,0,0 (123x.4..)
0,8,10,x,6,10,0,0 (.23x14..)
6,8,x,10,0,10,0,0 (12x3.4..)
10,8,10,x,0,6,0,0 (324x.1..)
0,8,0,10,6,10,x,0 (.2.314x.)
10,8,x,10,0,6,0,0 (32x4.1..)
0,8,x,10,6,10,0,0 (.2x314..)
0,8,0,10,10,6,x,0 (.2.341x.)
0,8,10,x,10,6,0,0 (.23x41..)
0,8,x,10,10,6,0,0 (.2x341..)
0,8,0,10,10,6,0,x (.2.341.x)
6,8,0,x,0,10,10,0 (12.x.34.)
0,8,0,x,10,6,10,0 (.2.x314.)
10,8,0,x,0,6,10,0 (32.x.14.)
0,8,0,x,6,10,10,0 (.2.x134.)
6,8,0,x,10,0,10,0 (12.x3.4.)
10,8,0,x,6,0,10,0 (32.x1.4.)
10,8,0,x,6,0,0,10 (32.x1..4)
0,8,0,x,6,10,0,10 (.2.x13.4)
6,8,0,x,0,10,0,10 (12.x.3.4)
0,8,0,x,10,6,0,10 (.2.x31.4)
10,8,0,x,0,6,0,10 (32.x.1.4)
6,8,0,x,10,0,0,10 (12.x3..4)
3,x,5,3,6,0,0,x (1x324..x)
6,x,5,3,3,0,x,0 (4x312.x.)
6,x,5,3,3,0,0,x (4x312..x)
3,x,5,3,6,0,x,0 (1x324.x.)
0,x,5,3,6,3,0,x (.x3142.x)
0,x,5,3,3,6,x,0 (.x3124x.)
3,x,5,3,0,6,0,x (1x32.4.x)
3,x,5,3,0,6,x,0 (1x32.4x.)
6,x,5,3,0,3,0,x (4x31.2.x)
0,x,5,3,6,3,x,0 (.x3142x.)
6,x,5,3,0,3,x,0 (4x31.2x.)
0,x,5,3,3,6,0,x (.x3124.x)
0,x,5,3,3,x,1,0 (.x423x1.)
3,x,1,3,x,0,5,0 (2x13x.4.)
0,x,1,3,x,3,5,0 (.x12x34.)
3,x,5,3,0,x,1,0 (2x43.x1.)
3,x,5,3,x,0,1,0 (2x43x.1.)
0,x,5,3,x,3,1,0 (.x42x31.)
3,x,1,3,0,x,5,0 (2x13.x4.)
0,x,1,3,3,x,5,0 (.x123x4.)
6,x,x,3,3,0,5,0 (4xx12.3.)
0,x,x,3,6,3,5,0 (.xx1423.)
0,x,x,3,3,6,5,0 (.xx1243.)
6,x,x,3,0,3,5,0 (4xx1.23.)
6,x,0,3,3,0,5,x (4x.12.3x)
3,x,x,3,6,0,5,0 (1xx24.3.)
3,x,x,3,0,6,5,0 (1xx2.43.)
3,x,0,3,6,0,5,x (1x.24.3x)
6,x,0,3,0,3,5,x (4x.1.23x)
0,x,0,3,6,3,5,x (.x.1423x)
3,x,0,3,0,6,5,x (1x.2.43x)
0,x,0,3,3,6,5,x (.x.1243x)
3,x,1,3,0,x,0,5 (2x13.x.4)
0,x,0,3,x,3,1,5 (.x.2x314)
0,x,0,3,x,3,5,1 (.x.2x341)
3,x,0,3,x,0,1,5 (2x.3x.14)
0,x,1,3,x,3,0,5 (.x12x3.4)
3,x,0,3,0,x,1,5 (2x.3.x14)
3,x,1,3,x,0,0,5 (2x13x..4)
3,x,0,3,x,0,5,1 (2x.3x.41)
0,x,0,3,3,x,5,1 (.x.23x41)
3,x,0,3,0,x,5,1 (2x.3.x41)
3,x,5,3,0,x,0,1 (2x43.x.1)
0,x,5,3,3,x,0,1 (.x423x.1)
3,x,5,3,x,0,0,1 (2x43x..1)
0,x,1,3,3,x,0,5 (.x123x.4)
0,x,0,3,3,x,1,5 (.x.23x14)
0,x,5,3,x,3,0,1 (.x42x3.1)
0,x,x,3,6,3,0,5 (.xx142.3)
10,8,0,10,6,0,x,x (32.41.xx)
10,8,10,x,6,0,0,x (324x1..x)
10,8,x,10,6,0,0,x (32x41..x)
6,8,10,x,10,0,0,x (123x4..x)
6,8,x,10,10,0,0,x (12x34..x)
6,8,0,10,10,0,x,x (12.34.xx)
0,x,x,3,3,6,0,5 (.xx124.3)
3,x,x,3,0,6,0,5 (1xx2.4.3)
6,8,x,10,10,0,x,0 (12x34.x.)
10,8,10,x,6,0,x,0 (324x1.x.)
6,x,x,3,0,3,0,5 (4xx1.2.3)
6,x,0,3,3,0,x,5 (4x.12.x3)
3,x,0,3,6,0,x,5 (1x.24.x3)
6,x,0,3,0,3,x,5 (4x.1.2x3)
0,x,0,3,6,3,x,5 (.x.142x3)
3,x,0,3,0,6,x,5 (1x.2.4x3)
0,x,0,3,3,6,x,5 (.x.124x3)
6,8,10,x,10,0,x,0 (123x4.x.)
3,x,x,3,6,0,0,5 (1xx24..3)
10,8,x,10,6,0,x,0 (32x41.x.)
6,x,x,3,3,0,0,5 (4xx12..3)
0,8,x,10,10,6,x,0 (.2x341x.)
0,8,10,x,6,10,0,x (.23x14.x)
0,8,x,10,10,6,0,x (.2x341.x)
0,8,10,x,10,6,0,x (.23x41.x)
0,8,x,10,6,10,0,x (.2x314.x)
10,8,x,10,0,6,0,x (32x4.1.x)
10,8,10,x,0,6,x,0 (324x.1x.)
10,8,10,x,0,6,0,x (324x.1.x)
10,8,x,10,0,6,x,0 (32x4.1x.)
0,8,10,x,10,6,x,0 (.23x41x.)
6,8,10,x,0,10,0,x (123x.4.x)
6,8,10,x,0,10,x,0 (123x.4x.)
6,8,x,10,0,10,0,x (12x3.4.x)
6,8,x,10,0,10,x,0 (12x3.4x.)
0,8,10,x,6,10,x,0 (.23x14x.)
10,8,0,10,0,6,x,x (32.4.1xx)
0,8,0,10,10,6,x,x (.2.341xx)
6,8,0,10,0,10,x,x (12.3.4xx)
0,8,0,10,6,10,x,x (.2.314xx)
0,8,x,10,6,10,x,0 (.2x314x.)
6,8,0,x,0,10,10,x (12.x.34x)
0,8,x,x,6,10,10,0 (.2xx134.)
10,8,x,x,6,0,10,0 (32xx1.4.)
0,8,x,x,10,6,10,0 (.2xx314.)
10,8,x,x,0,6,10,0 (32xx.14.)
10,8,0,x,0,6,10,x (32.x.14x)
0,8,0,x,6,10,10,x (.2.x134x)
10,8,0,x,6,0,10,x (32.x1.4x)
6,8,x,x,0,10,10,0 (12xx.34.)
6,8,x,x,10,0,10,0 (12xx3.4.)
6,8,0,x,10,0,10,x (12.x3.4x)
0,8,0,x,10,6,10,x (.2.x314x)
0,8,0,x,6,10,x,10 (.2.x13x4)
6,8,0,x,0,10,x,10 (12.x.3x4)
6,8,x,x,10,0,0,10 (12xx3..4)
0,8,0,x,10,6,x,10 (.2.x31x4)
10,8,x,x,0,6,0,10 (32xx.1.4)
10,8,x,x,6,0,0,10 (32xx1..4)
0,8,x,x,10,6,0,10 (.2xx31.4)
6,8,0,x,10,0,x,10 (12.x3.x4)
6,8,x,x,0,10,0,10 (12xx.3.4)
10,8,0,x,6,0,x,10 (32.x1.x4)
0,8,x,x,6,10,0,10 (.2xx13.4)
10,8,0,x,0,6,x,10 (32.x.1x4)
Feedback